CDR DEVELOPMENT PROJECT ## Creating A Microwave-Based Upper-Tropospheric Humidity (UTH) FCDR Johnny Luo¹ (PI), W. B. Rossow¹ (co-PI), D. Kley^{2,3} (co-I), and Jeyavinoth Jeyaratnam¹ ¹City College of New York, CUNY ²Colorado State University ³Research Centre Juelich GmbH, Germany Correspondence: Johnny Luo, luo@sci.ccny.cuny.edu #### **Outline** - Project Description - Production and QA Approach - Applications - Schedule & Issues ## **Project Description** Goal: "...bring together all the upper-tropospheric humidity (*UTH*)-related radiance data from multiple satellites and process them to establish a long-term, global, inter-calibrated radiance record from which UTH can be retrieved and UTH research can be conducted." #### Why UTH? Despite the small amount, UTH contributes significantly to the greenhouse effect of H₂O ## **Project Description** Goal: "...bring together all the *UTH-related radiance* data from multiple satellites and process them to establish a long-term, global, inter-calibrated radiance record from which UTH can be retrieved and UTH research can be conducted." Source Data for long-term UTH measurements 1. HIRS ch12 (6.7 μm) ← Already an operational FCDR (Shi et al. 2011) - 2. Geostationary UTH channel (6.3-6.5 μ m) - 3. SSM/T2, AMSU-B, ... (~183 GHz) Focus of this project - 4. MOZAIC (Measurement of ozone and water vapour by Airbus inservice aircraft) One of the calibration bases # **Project Description** | CDR(s)
(Validated
Outputs) | Period of
Record | Spatial
Resolution;
Projection
information | Time Step | Data
format | Inputs | Uncertainty
Estimates
(in percent
or error) | Collateral
Products
(unofficial
and/or
unvalidated) | |----------------------------------|---------------------|---|-----------|----------------|----------------------------------|--|---| | SSM/T2
UTH | 1992 -
2008 | ~ 48 km at
nadir | | netCDF | Raw binary
files from
NOAA | | Collocated
ISCCP cloud
info | | AMSU-B
UTH | 2000 -
present | ~ 16 km at
nadir | | netCDF | The same
as above | | The same as above | ## **Production Approach** (Use SSM/T2 as an example; we are working on AMSU-B) Uncalibrated, raw SSM/T2 data (Two versions: one from NESDIS and the other from NGDC) Granularize and quality control Apply various calibration methods Append ISCCP cloud info # SSM/T2 TB(183±1 GHz), monthly, zonal means **UTH FCDR** ### **Production Approach** (Use SSM/T2 as an example; we are working on AMSU-B) #### Various Calibration Methods: Method 1: simultaneous nadir overpass (SNO) Method 2: Compare with simulated TBs based on collocated MOZAIC take-off & landing profiles Method 3: Compare monthly/zonal means for the overlapping periods Method 4: Use natural targets (e.g., Antarctica and tropical ocean) for intercomparison Goal: seek consistency among different calibration methods # SSM/T2 TB(183±1 GHz), monthly, zonal means ## **Production Approach** (Use SSM/T2 as an example; we are working on AMSU-B) An important ancillary data for UTH is clouds, because certain clouds (e.g. deep convection) can contaminate UTH radiances and need to be marked up. #### SSM/T2 TB(183±1 GHz) swath data # An example of deep convection contamination ## **Quality Assurance Approach** Ways to determine product quality for future data - 1. Compare TB histogram against long term statistics - 2. Compare with simulated TBs using collocated MOZAIC profiles ## **Applications** Because UTH contributes to \sim 1/3 of the H₂O greenhouse effect, it will help better monitor and understand global warming to have a reliable long-term UTH CDR. MW-based UTH measurements have the advantage of being less sensitive to clouds. Soden et al. (2005), Science. HIRS Ch12 is an IR UTH channel, which is easily contaminated by high-level clouds. We will supplement it with an MW-based UTH record (which is less affected by clouds). #### Schedule & Issues #### (<u>Year 1: 2010-2011</u>) - 1. Explored various methods to calibration SSM/T2; - 2. Started the effort of re-archiving SSM/T2 data. #### (Year 2: 2011-2012) - 1. Continue the effort to re-archive SSM/T2 (thanks to Hilawe Semunegus of NCDC and Dan Kowal of NGDC) - 2. Append SSM/T2 with ISCCP cloud info #### (Year 3: 2012-2013) - 1. Compare various calibration results and consolidate them - 2. Preliminary comparison between SSM/T2 and AMSU-B (1 yr of data) #### (No-cost extension: 2013-2014) - Finish calibration of AMSU-B and SSM/T2 - 2. Bring in IR UTH data from GEOs; - 3. Package up the UTH CDR and deliver it to NCDC.